US009268737B2

a2 United States Patent 10) Patent No.: US 9,268,737 B2
Hendry 45) Date of Patent: Feb. 23, 2016
(54) MANAGING VIRTUAL COMPUTING 2012/0311116 Al* 12/2012 Jalanc.......... HO04L 67/34
SERVICES 7091222
2012/0331454 Al* 12/2012 Crossetal.ccccoeeene. 717/170
. 2013/0007090 Al 1/2013 Sankararaman
(71) Applicant: Morgan Stanley, New York, NY (US) 2014/0006534 ALl* 1/2014 Jainetal. oo 709/208
(72) Inventor: Keith Hendry, Kilmarnock (GB) FOREIGN PATENT DOCUMENTS
(73) Assignee: MORGAN STANLEY, New York, NY WO WO 2010034608 Al * 4/2010
Us) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Wilson, Paul, “Designing a Scalable XenDesktop Farm,” Sep. 22,
patent is extended or adjusted under 35 2010, downloaded from http://www.citrix.com/site/resources/dy-
U.S.C. 154(b) by 280 days. namic/additional/ATASeries-Designing- A-Scalable-XenDesktop-
Farm-Notes.pdf on Mar. 12, 2013.
(21) Appl. No.: 13/795,040 “XenDesktop and XenApp Best Practices,” Dec. 14, 2012, down-
loaded from http://support.citrix.com/article/CTX 132799 on Mar.
(22) Filed: Mar. 12,2013 12, 2013.
Spruijt, Rueben, “VDI Smackdown,” Mar. 2013, downloaded from
(65) Prior Publication Data http://www.pqr.com/images/stories/Downloads/whitepapers/
vdi%?20smackdown.pdf on Mar. 12, 2013.
US 2014/0280799 A1l Sep. 18, 2014
* cited by examiner
(51) Imt.ClL
GOG6F 15/177 (2006.01) Primary Examiner — Wing F Chan
GO6F 9/50 (2006.01) Assistant Examiner — Padma Mundur
(52) US.CL (74) Attorney, Agent, or Firm — K&L Gates LLP
CPC GO6F 15/177 (2013.01); GO6F 9/5027
(2013.01) 67 ABSTRACT
(58) Field of Classification Search Computer-implemented systems and methods for managing
None) virtual computing services. A service interface may receive
See application file for complete search history. from an administrative user an instruction indicating a con-
. figuration change for a first virtual computing service. A
(56) References Cited plurality of agents comprises a leader agent and at least one
U.S. PATENT DOCUMENTS other agent. The leader agent may assign to the at least one
other agent a plurality of jobs for implementing the configu-
5,893,905 A * 4/1999 Mainetal.c.......... 705/7.38 ration change. The at least one other agent may execute at
2003/0028640 Al* 2/2003 ... HO4L 29/06 least one of the plurality of jobs, where executing the at least
y . 3 | 709; 226 one of the plurality of jobs comprises modifying a configu-
%8?3 /82?}%% ﬁ} ; /38?8 Ezi{)(f;a& o 709/223 ration of a virtual desktop site associated with the first virtual
2010/0251363 Al 9/2010 Todorovic computing service.
2011/0119478 Al* 5/2011 Jackson ... 713/100
2011/0153781 Al 6/2011 Srinivas, et al. 20 Claims, 7 Drawing Sheets
by - " e
INDEX
w 102 108
@/1% w&aleSche
15 4 108
LY AGENT :
1 1 (COORDINATOR)]
[EADER
115<|: SKILED ' ENERIC REAL TME]
L ASI NORTH DATA
EUROPE \ AMERICA
SDK. Al

|XsnDesklop4 H l XenDesktopS—ﬂ [VCENTER ﬂ

[
PROPRIETARY|
SERVICE HYPERV

PN

L ISRSRL__so

N
p

jrdl]

12

<

:
VIRTUAL DESKTOP FUNCTIONS)30

132 12 12 12
[OCALUSER|” [LOGALUSER |~ [LOCALUSER| . , [LOCALUSER
DEVICE DEVICE DEVICE DEVICE

US 9,268,737 B2

Sheet 1 of 7

Feb. 23, 2016

U.S. Patent

l 'Ol
T E T LY EWEN i
BELY: il B mm%._so.m_e xmwagowe 4350 YO0
SNOLLONNS dOLYS3a TWLHIA
06}
) 07
w T
|) OGS
m N3 | |ianeiougl || d3iNaon | || odowssquex | || pdowsequey
: v — L)
m X3S J%é A0 ¥as ;3
“ m_ —
! .\ \ //.
i L LVONEY \ 34083 N
e HLNON visy
WL Y3 A_v o G | 50
\\ w Y b-ELEN 1 //
o J0IVNGH000 I < il
m \hzmo,\ A
! el
m %0l s
G -
0INS3SEIM
\ A
G0l 0} \ g
TVLY0d oy L /
Y01~ | | 004

US 9,268,737 B2

Sheet 2 of 7

Feb. 23, 2016

U.S. Patent

¢ 9ld
TGN
e+ | 8o
- 3030
73991 aaLngisia | -z
a1
| 43091
w80
dNOY9 NOILND3X3
/
00z
(S)NTOY N3OV
Y EEL
i ;
, |
HOLYNIQY00) :
N3OV
/

80l

U.S. Patent Feb. 23,2016 Sheet 3 of 7 US 9,268,737 B2

300
M 30 306 308 e 310 312
r SERVE; cown(;ﬁ;non - Aeﬁn?/ wmmwé@p
VSRR INTERFEREHCE DATA AGENT COORDMATOR i
U1 >
~ Oy
http:gme
301 32
?/ -~ {RERGOI |
0, LOOKUP > 38
REQUESTED
s ™ SeoRiioy YA g 1
DATAFROM | [FORMATSTRE. HoJ] LOOKUP ; 3%
U [DAATO TRl !
F BERETURNEDAND || (DATABASE
FETCHDATA
PUISREALTHE (=
DRAFROMOTHER || 0] STORE | 332
S
periissooap [(PROGRESS f@
RE%%%%TS[ARSI | a2
T " 336
PERORIED <o SHE (i ={CONHGUREi
ADESKTOP ALSE JJ’ UPOATE
ExeculeQperaton [z | Actionliem Yy /
1| [SENDTOCUEE
) \ PROBRESS
28
, WATCH QUELE
5
346-
\ [~ IscHEDULER
POATE J 30
e L e @
PROGRESS xecuteOperation CONFIGURE
348

PD\SE FIG. 3

U.S. Patent Feb. 23,2016 Sheet 4 of 7 US 9,268,737 B2

400

START SYNC_~402 /
JOB

Y

GETALL CONFIGUATION FOR 04
SINGLE VIRTUAL DESKTOP SITE 128

106

CONFIG
DATABASE

Y

GETALL 08 eskrop
DESKTOP CONFIGURATION DATASTORE
Y
408
COMPUTE @
106 DIFFERENCES
Y

CONFIG
DATABASE

GET PREVIOUS 410
DIFFERENCES

COMPUTE DIFFERENCES |~ 412
OF DIFFERENCES ”

FOR EACH C:OMPARISON /
IN SET BUT NOT IN DIFF TABLE }\(414 EXISTS IN SETAND DIFF TABLE

! e !

420

STOREDIFFIN | ~416 ~JMAKE CHANGE T0
ORE DT IN DIFF TABLE BUT NOT mz 1385T E CHAS
4 122 !
REMOVE DIFF I REMOVE DIFF
FROM DATABASE FROM DATABASE

FIG. 4

US 9,268,737 B2

Sheet S of 7

Feb. 23, 2016

U.S. Patent

G Ol

MOQLAHS
/\l —- \f
s

d30vIT AN HOLYM

06S . 07 \
85~ Teagon NG IR R E e
$53008d N3OV §53004d NOLLOTT H30VAT ||
g G3TIYS LON 4l

009

S3¥IdX3 LNOINIL TIIL LIVM

U.S. Patent Feb. 23,2016 Sheet 6 of 7 US 9,268,737 B2

600

602 /

608
N RUN LEADER
RESOURCE PROCEDURE) 604
SCOPE /
610\CONFIGURATION COMPUTE ALL DEFAULT
N EXECUTION GROUPS +
HARD-CODED | |[TRIGGER CONFIGURATIONS
DEFAULT
CONFIGURATION 606
Y /
GET CURRENT
I (% CONFIGURATION FROM
AGENT COORDINATOR "
FOR-EACH EXECUTION GROUP J
—] =
616
NEWER THAN
CURRENT
620
\ Yy /
618 REMOVE MAPPINGS GET CURRENT
IN COORDINATOR MAPPINGS
4
622-1| UPDATE COORDINATOR
CONFIG
| 624
y /
ADD TO MAPPING
COLLECTION
_—626 628
|| RUNPLACEMENT | UPDATE MAPPINGS
ALGORITHM COORDINATOR

FIG. 6

US 9,268,737 B2

Sheet 7 of 7

Feb. 23, 2016

U.S. Patent

. 9Ol
EIIENES
EI TS
<> 0 ‘M &/@
N AT
7
L
BN EIREIES
‘m) WHOMLIN ‘M ‘M
801 iyl i L' Rk
7 7
W01 0L
ERENRESINTA0)
7 ,
S) 28 2l

00.

US 9,268,737 B2

1
MANAGING VIRTUAL COMPUTING
SERVICES

BACKGROUND

Many enterprises utilize virtual computing services to
manage the computing needs of their employees and other
users. Virtual computing services allow enterprises to provide
desktop functionality to users without the need to install all
necessary software, such as operating systems, etc., on the
local user devices. Typically, all or part of the software nec-
essary to implement a virtual computing service (e.g., a vir-
tual desktop, virtual application, or group of virtual applica-
tions) is hosted at a central processing location. Users utilize
local machines to access a virtual computing service hosted
by the central server.

Virtual computing services are often implemented using
one or more virtual desktop sites or farms at the central
processing location. Each virtual desktop site hosts one or
more virtual computing services that are provided to local
user devices. Virtual computing services can be deployed in
different forms. In some implementations, the virtual desktop
site hosts all of the functionality of a virtual desktop. The user,
through the local machine, is provided with an operating
system and applications executed remotely at the virtual
desktop site. Some users may be provided with user-specific
virtual desktops, with the central processing location main-
taining user profile information and implementing local stor-
age. In some implementations, the virtual desktop site
streams a virtual desktop to a local user device such that some
software components of the virtual desktop are executed at
the local user device. Also, in some implementations, virtual
desktop technology is utilized to provide users with applica-
tions that are executed at the central processing location, but
accessed via the local user devices.

Virtual computing services provide advantages to users
and to enterprise information technology (IT) groups. Users
can have access to a common desktop and/or application
regardless of the location or capabilities of the local user
device that they utilize. IT groups benefit by having all virtu-
ally provided desktops and/or apps hosted at the central pro-
cessing location. This simplifies software maintenance as
updates and/or patches can be applied to the various virtual
desktop sites and need not be separately pushed or otherwise
installed to each local user device. Security is similarly sim-
plified. The process of updating the central processing loca-
tion, including the virtual desktop sites, however, creates
additional complications.

FIGURES

Various embodiments of the present invention are
described here by way of example in conjunction with the
following figures, wherein:

FIG. 1 is a block diagram showing one embodiment of an
environment for implementing the systems and methods for
managing virtual computing services.

FIG. 2 is a block diagram showing one embodiment of a
configuration for implementing an execution group.

FIG. 3 is a flow chat showing one embodiment of a process
flow that may be implemented by the management system to
manage the configuration of one or more virtual desktop sites.

FIG. 41s aflow chart showing one embodiment of a process
flow that may be implement by the management system to
execute a synch job.

FIG. 51s aflow chart showing one embodiment of a process
flow that may be executed by an agent over its lifecycle.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 61is a flow chart showing one embodiment of a process
flow for executing the leader procedure or job referenced in
the process flow of FIG. 5.

FIG. 7 is block diagram illustrated one embodiment of a
hardware environment for implementing the various systems
and methods described herein.

DESCRIPTION

Various embodiments are directed to systems and methods
for managing virtual computing services. As used herein, the
term virtual computing service refers to various types of
computing services provided to local user devices and man-
aged by central processing locations. For example, virtual
computing services include the provision of complete virtual
desktops facilitated by the central processing location (e.g.,
by an associated virtual desktop site). A complete virtual
desktop may comprise desktop functionality such as an oper-
ating system, at least one application, storage, etc. In various
embodiments, virtual desktop sites may facilitate virtual
desktops by hosting virtual desktops, streaming the virtual
desktops to local user devices and/or managing virtual desk-
tops stored and executed at local user devices. Virtual com-
puting services also comprise virtual applications that are
hosted, streamed and/or managed by a virtual desktop site.
For example, virtual applications may be provided to physical
(e.g., non-virtual) desktops according to various different
methods.

In some embodiments, a central processing location
executes a service interface for receiving configuration
changes from administrative users (e.g., users associated with
the information technology (IT) function of an enterprise).
The received configuration changes may apply to a single
virtual service and/or a group of virtual computing services.
The central processing location may execute a plurality of
agents for implementing a requested configuration change.
The agents may be executed by various servers or other com-
puter hardware at the central processing location. In some
embodiments, some or all of the agents are executed by vir-
tual desktop sites that also host virtual computing services.

Changing the configuration of a virtual computing service
(or hosting virtual desktop site) may comprise changing an
association between one or more virtual computing service
and one or more end users. Different virtual computing ser-
vices may be associated with or assigned to end users in
different ways. Some virtual computing services may be
uniquely assigned to a single end user. The single end user
may be authorized to access the virtual computing service to
the exclusion of other end users. The single end user may be
assigned to the virtual computing service manually or upon
the first access to the virtual computing service. Some virtual
computing services may be assigned to (and accessible by) a
group of end users. For example, a virtual desktop site may
host a pool of virtual computing services that are assigned on
a first come, first served basis to end users belonging to a
defined group. Changes to the configuration of a virtual appli-
cation may be similarly implemented.

The plurality of agents may execute various jobs for imple-
menting configuration changes received from administrative
users. A leader agent, selected from among the plurality of
agents, may assign the various jobs to particular agents. In
some embodiments, the leader agent also facilitates updates
to the configuration of the agents. Agents that are not leader
agents may be classified as skilled agents or as non-skilled
agents. Non-skilled or generic agents may be capable of
performing general processing jobs. Skilled agents may com-
prise functionality that allows the skilled agents to perform

US 9,268,737 B2

3

particular jobs. Skilled agents may be distinguished from
non-skilled agents, for example, based on inherent function-
ality and/or access to resources. For example, some skilled
agents comprise functionality that other agents lack such as,
for example, functionality for accessing an application pro-
gram interface (API) of a particular type of virtual desktop
site. Also, some skilled agents are distinguished on the basis
of the resources to which the agent has access. For example,
a skilled agent may be hosted by the same hardware that hosts
a particular virtual desktop site (e.g., a CITRIX XENDESK-
TOP 4 farm). Such an agent may have the capability to modify
the configuration of the relevant virtual desktop site, includ-
ing virtual computing services stored thereon. The leader
agent may assign skilled agents with jobs corresponding to
their skill, sometimes to the exclusion of other jobs.

In various embodiments, a plurality of jobs may be
grouped into an execution group. An execution group may
comprise a name, a distributed queue of jobs, and an exclusive
state. The exclusive state describes a position in the distrib-
uted queue. For example, from the exclusive state and the
distributed queue, it may be possible to derive a job from the
queue that are executed, are being executed, and/or have yet
to be executed. In various embodiments, the execution group
may be executed according to a sequence defined, at least in
part, by the distributed queue. For example, the leader agent
and/or a separate agent coordinator, may implement a locking
system. Before executing a job from the distributed queue, an
agent may request a lock associated with the job. If the lock is
available, the agent may execute the job. If the lock is not
available, the agent may not execute the job (and may attempt
to execute the next job in the queue). The lock for any given
job may be unavailable, for example, if the job is already
being executed by another agent and/or if one or more predi-
cate jobs are not yet completed. Predicate jobs may be jobs
that must be completed prior to execution of the job. In some
embodiments, execution groups are executed in a manner
dependent on the geographic location of the associated virtual
desktop site or sites. For example, the agents selected to
execute an execution group may be agents implemented logi-
cally and/or geographically near the virtual desktop site or
sites.

The service interface may provide administrative users
with synchronous and asynchronous methods for implement-
ing configuration changes. According to a synchronous
method, the administrative user may request that a configu-
ration change be implemented directly by the service inter-
face. According to an asynchronous method, the service inter-
face may derive one or more jobs for implementing the
configuration changes, expressed as a distributed queue indi-
cating the order in which the jobs are to be executed. The
service interface may further map the distributed queue to
particular agents. The distributed queue and mapping may
collectively represent an execution group. The execution
group is pushed directly to the leader agent or an agent coor-
dinator for execution by the agents. The leader agent or agent
coordinator maps the jobs from the distributed queue to other
agents for execution. According to a second example asyn-
chronous method, the central processing location may com-
prise a configuration database that stores configuration data
for various virtual desktop sites. The interface, e.g., upon the
request of an administrative user, stores a configuration
change to the configuration database. The leader agent may
cause one or more other agents to periodically implement a
synch job. When executing the synch job, the one or more
other agents may compare the current configurations of the
various virtual desktop sites to the configurations stored at the
configuration database. If a difference is found, the difter-

10

15

20

25

30

35

40

45

50

55

60

65

4

ence, as indicated at the configuration database, may be
pushed to the appropriate virtual desktop site or sites. In some
embodiments, detected differences are saved to the configu-
ration database (e.g., as a difference table). When a detected
difference appears in the difference table, it may be pushed to
the appropriate virtual computing service. In this way, a
detected difference must be present for at least two cycles of
the synch job to be pushed to the virtual computing service
(e.g., a first cycle that pushes the detected difference to the
detected difference to the difference table and a second cycle
that finds the detected difference in the difference table and
pushes it to the virtual computing service).

FIG. 1 is a block diagram showing one embodiment of an
environment 100 for implementing the systems and methods
for managing virtual computing services. The various com-
ponents of the environment 100 are software modules that
may be executed on any suitable type of hardware. Examples
ot hardware and hardware systems for executing the environ-
ment 100 are provided herein at F1G. 7. The environment 100
comprises various virtual desktop sites 128. The virtual desk-
top sites 128 provide various virtual computing services to
one or more local user devices 132. For example, the virtual
desktop sites 128 may be in communication with the one or
more local user devices 132 via a local and/or wide area
network including wired and/or wireless connections. The
local user devices 132 may include any suitable type of com-
puter device capable of receiving virtual computing services.
For example, local user devices 132 may include desktop
computers, laptop computers, tablet computers, smart
phones, etc. Local user devices 132 may, but need not, have
processing capacity sufficient to execution virtual desktops
and/or applications locally.

The virtual desktop sites 128 may comprise any suitable
type of virtual desktop site. For example, the virtual desktop
sites 128 may comprise one or more XENDESKTOP 4 farms
116 available from CITRIX SYSTEMS, INC., one or more
XENDESKTOP 5 sites 118, also available from CITRIX
SYSTEMS, INC., one ormore VCENTER sites 120 available
from VMWARE, INC., one or more proprietary virtual desk-
top service sites 122, one or more HYPER-V sites 124 avail-
able from MICROSOFT, INC., and one or more other sites
126 for providing various other virtual computing service
functionality 130. The various virtual desktop sites 128 may
provide different kinds of virtual computing services 130. For
example, some sites 128 host virtual computing services that
are executed exclusively at the respective site 128 and pro-
vided to the local user devices 132. Also, various sites 128
provide virtual computing services that are streamed to user
devices 132 such that processing to implement the virtual
computing service is partially or completely performed at the
local user device 132. Some sites 128 are configured to pro-
vide virtual computing services in the form of local virtual
machines that are stored and run locally on a local user device
132. The site 128 may act as a hypervisor that synchronizes
the locally stored virtual computing service with a master
image on the site. Additionally, some sites 128 may provide
virtual application services that include one or more indi-
vidual applications instead of all desktop components. Such
virtual applications may be hosted at the respective site 128,
streamed from the site 128 to the local user device 132 and/or
hosted locally and managed by hypervisor functionality
executed at the site 128.

The various sites 132 may be managed by a management
system 134. The management system 134 comprises various
agents 115, an agent coordinator 108, a configuration data-
base 106 and a service interface 105, and an optional index
application 136. The agents 115 may execute various jobs, as

US 9,268,737 B2

5

described below, for managing the virtual desktop sites 128.
Agents may comprise skilled agents 114, generic or non-
skilled agents 110 and a leader agent 112. A leader agent 112
may be elected, for example, upon agent start up, as described
below. The leader agent 112 may perform various manage-
ment tasks including, for example, assigning jobs to the vari-
ous other agents 115 and managing configurations of the
other agents 115. Skilled agents 114, by virtue of their coded
capabilities and/or capabilities of the hardware executing the
skilled agents 114, may be capable of performing specialized
jobs. Forexample, agents 114 executed at an XENDESKTOP
4 site 116 may have skills for configuring the site 116. Non-
skilled or generic agents 110 may be configured to perform
general jobs, for example, under the direction of the leader
agent 112. Although three agents 110, 112, 114 are shown, it
will be appreciated that any suitable number of agents, and
any suitable number of agents of each respective type, may be
used. The agent coordinator 108 may provide functionality,
described herein, for managing the operations of the various
agents 115. One example product that may implement the
agent coordinator is the ZOOKEEPER software package
available from the APACHE SOFTWARE FOUNDATION.

The configuration database 106 may store configuration
data describing configurations of various components of the
management system 134. For example, the configuration
database 106 may store configuration data describing the
configurations of the various virtual desktop sites 128 includ-
ing, for example, configurations of various remote virtual
computing services (e.g., desktops and/or applications)
hosted or otherwise facilitated by the sites 128. In some
embodiments, the configuration database 106 may also store
data describing the configurations of various other compo-
nents of the management system 134, including the configu-
rations of various agents 115. The service interface 105 may
comprise a portal 104 and (optionally) a web service 102.
Together, the portal 104 and the web service 102 implement
the service interface 105 that may allow administrative users
to request configuration changes in virtual desktop sites 128,
as described herein. Also, in some embodiments, the service
interface 105 may comprise functionality for transforming a
requested configuration change or change into a set of jobs to
be executed on the various virtual desktop sites 128 (e.g.,
executed by the various agents 115). The index application
136 may be programmed to record and index instructions
received from administrative users through the service inter-
face 105.

FIG. 2 is a block diagram showing one embodiment of a
configuration for implementing an example execution group
200. Execution groups, such as the group 200, may be utilized
by the management system 134 to implement configuration
changes to the various virtual desktop sites 128. For example,
execution groups may be groupings of jobs to be executed by
the management system 134 (e.g., agents 115 thereof) to
update or modity a configuration of a virtual desktop site 128.
Each execution group 200 may comprise a distributed queue
202 of jobs and may comprise a plurality of job triggers 204,
206, 208 for implementing the jobs in the queue 202. An
execution group 200 may be described by a name and an
exclusive state. The exclusive state describes a position of the
execution group on the distributed queue. In conjunction with
the distributed queue, the exclusive state may indicate jobs
from the queue that have been executed, are being executed
and/or have yet to be executed. For example, the exclusive
state may be indicated by a pointer directed to a position in the
distributed queue. In some embodiments, an execution group
200 may also be described by a distribution factor. The dis-
tribution factor may indicate a distribution of the jobs from

5

10

15

20

25

30

35

40

45

55

60

65

6

the queue 202 across all agents 110, 114. For example, the
distribution factor may indicate a percentage of mapped
agents to which the jobs in the queue will be distributed. In
some embodiments, execution groups may comprise jobs that
are exclusively for execution by skilled agents or exclusively
for execution by un-skilled agents.

To maintain the exclusive state of an execution group 200,
it is desirable for the management system 134 to execute the
jobsindicated by the distributed queue 202 in order (e.g., ajob
order) and one at atime. The leader agent 112 may assign jobs
from the distributed queue 202 to various other agents 115.
For example, the leader agent 112 may distribute the various
job triggers 204, 206, 208 to the other agents 115. Each job
trigger 204, 206, 208 may comprise data describing the asso-
ciated job. For example, the job triggers 204, 206, 208 may
indicate details of the associated job; a chronological table
indicating an order and/or periodic nature of the job; a priority
of the job; monitoring details for the job; and (optionally) an
alternate action to be taken if the scheduled time for executing
the job has passed. In some embodiments, the job triggers
204, 206, 208 are generated by the agent coordinator 108
and/or the leader agent 112. The leader and/or agent coordi-
nator 108 may implement a management mechanism for
ensuring that the other agents 115 execute the jobs in the
queue 202 in order so as to maintain the exclusive state of the
execution group 200. For example, the various job triggers
204, 206, 208 may indicate an execution time or schedule
indicating to each of the other agents 115 when the agents are
to execute their assigned jobs. Also, in some embodiments,
the leader agent 112 and/or the agent coordinator 108 may
implement a lock system. For example, an agent 115 may be
assigned a job along with an indication of a lock that must be
obtained before executing the job. When the agent 115 is to
perform a job, it first requests the associated lock from the
agent coordinator 108 and/or the leader agent 112. The agent
coordinator 108 and/or leader agent 112 may provide the lock
only if all of the predicate jobs have been completed. Upon
receiving the lock, the agent 115 may perform the job. Upon
performance of the job, the agent 115 may return the lock to
the agent coordinator 108 or other central processing loca-
tion. This may indicate that the lock for the next job in the
queue 202 may be provided when requested by an agent 115.

FIG. 3 is a flowchart showing one embodiment of a process
flow 300 that may be implemented by the management sys-
tem 134 to manage the configuration of one or more virtual
desktop sites 128. The process flow 300 is shown in conjunc-
tion with columns 302, 304, 306, 308, 310, 312 indicating
actions performed by different components of the manage-
ment system 134. For example, column 302 indicates actions
performed by an administrative user 301. Column 304 indi-
cates actions performed by the service interface 105. Column
306 indicates actions performed by the configuration data-
base 106. Column 308 indicates actions performed by an
agent or agents 115. Column 310 indicates actions performed
by the agent coordinator 310. Column 312 indicates actions
performed by a virtual desktop site 128. It will be appreciated
that the process flow 300 illustrates just one example distri-
bution of actions among the administration user 301 and the
various components of the system 134. Other distributions
may be used instead.

At 314, the administrative user 301 may access the service
interface 105. The service interface 105 (e.g., web service
102) may, at 318, provide a user interface to the administra-
tive user 301 (e.g., via the portal 104). Through the interface,
the administrative user 301 may request data describing the
configuration of at least one virtual desktop site 128. The
requested information, for example, may pertain to a configu-

US 9,268,737 B2

7

ration of the site 128 and/or the configuration of one or more
virtual computing services hosted and/or managed by the site
128. At 322, the service interface 105 may look up the
requested information. For example, a version of the
requested configuration may be retrieved from the configu-
ration database 106 at 328. Also, a version of the requested
configuration may be retrieved from the relevant virtual desk-
top site 128 at 326. (The transfer described at 326 is an
example of real time data 129 provided to the service inter-
face 105 and shown in FIG. 1). At 324, the service interface
105 may format the data returned from the configuration
database 106 and the site 128 and provide it to the adminis-
trative user 301 (e.g., via the interface).

At 328, the administrative user 301 may request that a
change in the configuration of the virtual desktop site 128 or
sites. For example, the administrative user 301 may request
that a change be made to one or more virtual computing
services hosted and/or administered by the site 128 or sites.
Various types of changes may be supported. For example, the
administrative user 301 may assign or de-assign a end user to
a virtual computing service, add or remove a end user to or
from a group of end users authorized to access a virtual
computing service (e.g., virtual desktop or virtual applica-
tion), add or remove a virtual desktop site 128 to the scope of
the management system 134, add or remove a folder of virtual
computing services to or from a virtual desktop site 128, add
or remove a group of virtual computing services from a vir-
tual desktop site 128, change a name of a virtual computing
services, change a maintenance mode of a virtual computing
services, and/or change whether a virtual computing service
is configured to be a part of a group of virtual computing
services. It will be appreciated that any of these operations
may be executed for a single user, virtual computing service,
virtual application, virtual desktop site 128, group, etc., or
over multiple examples of one or more of each.

At 330, the service interface 105 may determine whether
the administrative user 301 has permission to perform the
requested configuration change and initiate performance of
the operation. At 332, the configuration database 106 may
store an action item to track progress of the configuration
change. At 342, the service interface 105 may determine
whether the configuration change is to be implemented in a
synchronous or asynchronous manner. In some embodi-
ments, this is indicated by the administrative user 301. If the
configuration change is to be made in a synchronous manner,
the service interface 105 may execute the configuration
change at 340, for example, by writing the configuration
change directly to the affected virtual desktop site 128 or sites
at 336. Upon completion of the configuration change, the
configuration database 106 may update the action item set at
332 so that the database 106 reflects the newly made configu-
ration change.

Referring back to 342, if the configuration change is to be
implemented in an asynchronous manner, the agent coordi-
nator 108 may receive an indication of the configuration
change and send it to a queue for the various agents 115 at
334. In some embodiments, the service interface 105 may
deconstruct the requested configuration change into one or
more jobs to be executed by agents 115 to bring about the
change. Also, in some embodiments, this operation may be
performed by the agent coordinator 108 or other central pro-
cessing location. At 344 an agent 115 may watch the queue. A
scheduler ofthe agent 115 may schedule execution ofajob for
implementing the configuration change at 346. At 348, the
agent 115 may execute the job to bring about the configura-
tion change, causing the configuration change at 350. At 352,
the configuration database may update the action item set at

20

30

35

40

45

8

332 to indicate the new configuration of the virtual desktop
site 128. In some embodiments, the configuration change
may require more than one job. For example, the configura-
tion change may be expressed as all or part of an execution
group, such as the group 200 described herein. In this case, the
actions 344, 346, 348, 350, 352 may be performed multiple
times by the same agent 115 or different agents 115 to bring
about the requested configuration change.

The process flow 300 illustrated synchronous and asyn-
chronous modes of implementing configuration changes. It
will be appreciated that the administrative user may select a
synchronous or asynchronous mode based on the type and
number of configuration changes to be made. For example, a
change to a single virtual computing service or to virtual
computing services hosted and/or administered by a single
virtual desktop site 128 may be made synchronously.
Changes to multiple virtual computing services across mul-
tiple virtual desktop sites may be performed asynchronously.

In addition to the synchronous and asynchronous modes
described in the process flow 300, the management system
134 may also implement a second asynchronous mode utiliz-
ing the configuration database 106. For example, the admin-
istrative user (through the service interface 105) may make a
change to the configuration for a virtual desktop site 128
stored at the configuration database 106. This may occur in
lieu of actually making the configuration change at the site
128. The agents 115 may be configured to implement a peri-
odic synch job that propagates changes from the configura-
tion database 106 to the associated virtual desktop site 128.
FIG. 4 is a flow chart showing one embodiment of a process
flow 400 for implementing such a synch job. The synch job
may begin at 402. The synch job may be executed by an agent
115. For example, the leader agent 112 may assign the synch
job to another agent 115 (e.g., a generic agent 110) to be
executed periodically (e.g., every day, every eight hours,
every week, etc.). Also, in some embodiments, execution of
the synch job may be handled by multiple agents 115.

The agent 115 may start execution of the synch job at 402.
At404, the agent 115 may retrieve configurations for all of the
virtual desktop sites 128 from the configuration database 106.
In some embodiments, where multiple agents 115 execute the
synch job, each agent 115 may be responsible for a portion of
the set of all virtual desktop sites 128. At 406, the agent 115
may receive configurations for all of the virtual desktop sites
128 (or all sites under the responsibility of the agent 115)
from the sites 128 themselves. At 408, the agent 115 may
compute differences, if any, between the configurations
received from the configuration database 106 and the con-
figurations received from the sites themselves. In some
embodiments, the agent 115 may also retrieve a set of previ-
ous differences. Previous differences may be stored at the
configuration database 106, for example, as a difference
table. The previous differences may reflect differences
between the database 106 and the respective sites 128 gener-
ated during a previous iteration of the synch job. At 412, the
agent 115 may compute a difference of differences. The dif-
ference of difference may reflect configuration differences
that are also part of the previous differences (e.g., were
detected during a previous instance of the synch job) and/or
configuration differences that are new since the last execution
of'the synch job.

In some embodiments, the actions illustrated in box 413
may be performed by the agent 115 for each comparison
between a site configuration as stored at the configuration
database 106 and the corresponding site configuration stored
at the site 128 itself. For example, at 414, the agent 115 may
determine whether a particular configuration difference was

US 9,268,737 B2

9

noted in the previous differences received from the configu-
ration database 106 at 410. The presence of a configuration
difference at the database 106 may indicate that the difference
was also present at the last execution of the synch job. If the
difference is evident from the comparison at 408, but is not
stored as part of the previous differences at the database 106,
the agent 115 may updated the previous differences at the
database 106 at 416. If the difference is reflected in the data-
base 106, but is not reflected in the comparison at 408, then
the agent 115 may remove the difference from the database
106. Ifthe difference is reflected by the comparison at 408 and
in the difference data received from the database 106, then the
agent 115 may implement the configuration change to the
appropriate virtual desktop site 128 at 420 and remove the
difference from the database 106, at 422.

In this way, any configuration changes entered into the
configuration database 106 are propagated to the virtual desk-
top sites 128 upon the second execution of the synch job. It
will be appreciated that the number of synch job iterations
necessary before a configuration change added to the data-
base 106 is propagated to the sites 128 may be modified and
set to any suitable value. For example, the synch job may be
configured to write implement every configuration difference
as a configuration change to an appropriate virtual desktop
site 128 for every iteration of the synch job for which the
configuration difference exists.

FIG. 51s aflow chart showing one embodiment of a process
flow 500 that may be executed by an agent 115 over its
lifecycle. Boxes 502, 504, and 504 include actions that may
be performed by the agent 115 at different states of its life-
cycle. For example, box 502 shows actions executed by an
agent 115 in an initial state. Box 504 shows actions that may
be executed by the agent 115 as part of the leader election
process state. Box 506 shows actions that may be executed by
the agent 115 during an agent process state. The process 500
may start at 502 when the agent 115 is activated. At 508, the
agent 115 may connect to the appropriate agent coordinator
108. In some implementations of the management system
134, there may be multiple instances of the agent coordinator
108. The agent 115 may connect to the coordinator 108 that is
in its geographic area and/or a coordinator 108 having load
capacity to take on the agent 115. At 510, the agent 115 may
be connected to the agent coordinator 108. If the agent 115 is
disconnected from the coordinator 108, at 512, it may dispose
of'its configuration at 514, wait until a time-out expires at 516
and the return to the connecting action at 508.

After connection at 510, the agent 115 may transition either
to the agent process state 506 and/or the leader election pro-
cess state 504. If the agent 115 is a skilled agent 114, it may
transition directly to the agent process state 506. For example,
a skilled agent 114 may not be considered for selection as the
leader agent 112. For agents 115 that transition to the leader
election process state 504, a leader election may take place at
518. The leader election may select an agent 115 to be the
leader agent 112 for further processing. The leader agent 112
may be selected in any suitable manner. In some embodi-
ments, leader selection procedure may be handled by the
ZOOKEEPER software package available from the APACHE
SOFTWARE FOUNDATION. At 520, the agents 115 may
watch for the next leader, which may be elected at 522. If an
agent 115 is not elected leader, it may transition to the agent
process state 506. If an agent 115 is elected leader then it may
alternately run the leader procedure job at 524 (See FIG. 6)
and watch the configuration state of the other agents at 526.

An agent 115 (e.g., 114, 110) may initially enter the agent
process state 506 in a not ready state 528. The agent 115 may
subsequently transition to a watch state 530. At the watch

10

15

20

25

30

35

40

45

50

55

60

65

10

state 530, the agent 115 may monitor a job queue imple-
mented, for example, by the agent coordinator 108 and/or the
leader agent 112. Skilled agents 114, in the watch state, may
report their skill capability to the leader agent 112. The leader
agent 112 may, in return, assign to the skilled agent 114 jobs
(e.g., job triggers) that require or benefit from the skilled
agent’s skill capability. The job queue may be, for example, a
distributed queue 202 of an execution group 200. The agent
115 may receive a stop instruction (e.g., from the leader agent
112 and/or the agent coordinator 108). Upon receipt of a stop
instruction, the agent 115 may transition to a stop state 536
and subsequently to a shutdown state 542. Alternatively, from
the watch state 530, the agent 115 may be assigned a job. For
example, a job trigger may appear on a queue at the agent
coordinator 108 associated with the agent 115. The agent 115
may enter a running state 532 upon assignment of a job. From
the running state 532, the agent 115 may start an agent sched-
uler at 534. The scheduler may organize and schedule jobs to
be performed by the agent 115. Also, from the running state
532, the agent 115 may transition to a watch configuration
state 538, where the agent 115 may monitor the leader agent
112 for an indication of a change to the agent’s configuration.
If a configuration change is requested by the leader agent 112,
the agent 115 may enter a configuration change state 540
where the requested change is implemented. Additional
details of agent configuration changes are provided below
with respect to FIG. 6. If the agent 115 does make a configu-
ration change, it may notify the scheduler at 541. For
example, the configuration change may affect the types of
jobs that the agent 115 is capable of doing.

FIG. 61is a flow chart showing one embodiment of a process
flow 600 for executing the leader procedure or job referenced
at 524 of the process flow 500. For example, the process flow
600 may be executed by the leader agent 112. The leader
procedure may begin at 602. At 604, the leader agent 112 may
compute default execution groups and trigger configurations.
For example, referring to FIG. 2, the leader agent 112 may
generate the execution group 200 including the configuration
of'the triggers 204, 206, 208. In computing the default execu-
tion groups and trigger configurations, the leader agent 112
may refer to a resource scope configuration 608 a hard-coded
default configuration 610. The configurations 608, 610 may
describe actual and potential configurations of various agents
115. Example configurations include skilled and generic or
non-skilled. The resource scope configuration 608 may be
stored at the configuration database 106 and may indicate a
planned configuration of each agent 115 current executing.
The hard-coded default configuration 610 may indicate the
configuration that an agent 115 is hard coded to implement
and may be accessible to the leader agent 112 by directly
querying the respective agent 115 and/or by examining
source code for the agent 115 (e.g., stored at the configuration
database 106).

At 606, the leader agent 112 may obtain a current configu-
ration for each agent 115. The current configuration 612 may
be obtained, for example, from the agent coordinator 108. In
various embodiments, the default configuration 610 and the
current configuration 612 may each be associated with a
signature. This may allow the leader agent 112 to determine
whether a configuration is out of date by comparing the sig-
natures of the configurations 610, 612. Box 614 represents
actions that may be performed for each execution group. For
example, each execution group may be associated with one or
more agents 115 for executing the jobs at the distributed
queue of the execution group. At 616, the leader agent 112
may determine if the default configuration 610 is newer than
the current configuration 612. If not, then the leader agent 112

US 9,268,737 B2

11

may, at 620, obtain current mappings between the agent 115
and its configuration (e.g., from the agent coordinator 108).
These mappings may be added to a mapping collection at 624.
If the default configuration 610 is newer than the current
configuration, then the leader agent 112 may remove map-
pings at the agent coordinator 108 between the agent 115 and
the current configuration 612 and update the mappings at 622
to reflect the default configuration as the new configuration.
The updated mappings may be added to the mapping collec-
tion at 624. A placement algorithm may be run at 626 to push
configuration changes to specific agents (e.g., agents at states
538 and 540 from above). Mappings at the coordinator 108
may be updated to reflect any agent configuration changes at
628.

FIG. 7 is block diagram illustrated one embodiment of a
hardware environment 700 for implementing the various
methods and systems described herein. The hardware envi-
ronment 700 comprises a plurality of server sites 704. Each
server site 704 may comprise one or more servers 706. Some
server sites 704, in addition to or instead of a server 706, may
comprise one or more databases 708. The various server sites
704 may execute different components of the environment
100 described above. For example, the configuration database
106 may be implemented by one or more of the databases
708. In various embodiments, some of the server sites 704
may implement virtual desktop sites 128. Various server sites
704 may implement agents 115, the agent coordinator 108,
the service interface 105, the index application 136, etc. In
some embodiments, a server site 704 executing a virtual
desktop site 128 may additionally execute one or more agents
115, as described herein. The various server sites 704 may be
in communication with each other and with local user devices
132 via a network 702. The network 702 may be wired,
wireless and/or mixed. The network 702 may utilize various
local area networks (LAN) and/or wide area networks (WAN)
such as the Internet. Collectively, the various server sites 704
may implement the central processing location. The various
server sites 704 may be positioned at a single geographic
location and/or may be distributed across multiple geo-
graphic locations.

The examples presented herein are intended to illustrate
potential and specific implementations of the present inven-
tion. It can be appreciated that the examples are intended
primarily for purposes of illustration of the invention for
those skilled in the art. No particular aspect or aspects of the
examples are necessarily intended to limit the scope of the
present invention. For example, no particular aspect or
aspects of the examples of system architectures, methods or
processing structures described herein are necessarily
intended to limit the scope of the invention.

Itis to be understood that the figures and descriptions of the
present invention have been simplified to illustrate elements
that are relevant for a clear understanding of the present
invention, while eliminating, for purposes of clarity, other
elements. Those of ordinary skill in the art will recognize,
however, that these sorts of focused descriptions would not
facilitate a better understanding of the present invention, and
therefore, a more detailed description of such elements is not
provided herein.

In various embodiments, modules or software can be used
to practice certain aspects of the invention. For example,
software-as-a-service (SaaS) models or application service
provider (ASP) models may be employed as software appli-
cation delivery models to communicate software applications
to clients or other users. Such software applications can be
downloaded through an Internet connection, for example, and
operated either independently (e.g., downloaded to a laptop

10

15

20

25

30

35

40

45

50

55

60

65

12

or desktop computer system) or through a third-party service
provider (e.g., accessed through a third-party web site). In
addition, cloud computing techniques, such as Platform as a
Service (PaaS) may be employed in connection with various
embodiments of the invention. For example, one or more of
the virtual desktop sites 128 may be implemented according
to an SaaS or PaaS model.

Moreover, the processes associated with the present
embodiments may be executed by programmable equipment,
such as computers. Software or other sets of instructions that
may be employed to cause programmable equipment to
execute the processes. The processes may be stored in any
storage device, such as, for example, a computer system
(non-volatile) memory, an optical disk, magnetic tape, or
magnetic disk. Storage devices may be local or remote rela-
tive to the hardware executing the processes (e.g., remote
storage, cloud-based or distributed storage, etc.). Further-
more, some of the processes may be programmed when the
computer system is manufactured or via a computer-readable
memory medium.

It can also be appreciated that certain process aspects
described herein may be performed using instructions stored
on a computer-readable memory medium or media that direct
a computer or computer system to perform process steps. A
computer-readable medium may include, for example,
memory devices such as diskettes, compact discs of both
read-only and read/write varieties, optical disk drives, and
hard disk drives. A computer-readable medium may also
include memory storage that may be physical, virtual, perma-
nent, temporary, semi-permanent and/or semi-temporary.

A “computer,” “computer device,” “host,” “engine,” or
“processor” may be, for example and without limitation, a
processor, microcomputer, minicomputer, server, mainframe,
laptop, personal data assistant (PDA), wireless e-mail device,
cellular phone, pager, processor, fax machine, scanner, or any
other programmable device configured to transmit and/or
receive data over a network. Computer systems and com-
puter-based devices disclosed herein may include memory
for storing certain software applications used in obtaining,
processing, and communicating information. It can be appre-
ciated that such memory may be internal or external with
respect to operation of the disclosed embodiments. The
memory may also include any means for storing software,
including a hard disk, an optical disk, floppy disk, ROM (read
only memory), RAM (random access memory), PROM (pro-
grammable ROM), EEPROM (electrically erasable PROM)
and/or other computer-readable memory media. Various sys-
tems described herein may be implemented utilizing comput-
ers including, for example the Health Tracking System 102,
and the various other systems 106, 108, 110, 112, 114, 116,
118.

In various embodiments of the present invention, a single
component may be replaced by multiple components, and
multiple components may be replaced by a single component,
to perform a given function or functions. Except where such
substitution would not be operative to practice embodiments
of'the present invention, such substitution is within the scope
of the present invention. Any of the servers or computer
systems described herein, for example, may be replaced by a
“server farm” or other grouping of networked servers (e.g., a
group of server blades) that are located and configured for
cooperative functions. It can be appreciated that a server farm
may serve to distribute workload between/among individual
components of the farm and may expedite computing pro-
cesses by harnessing the collective and cooperative power of
multiple servers. Such server farms may employ load-balanc-
ing software that accomplishes tasks such as, for example,

US 9,268,737 B2

13

tracking demand for processing power from different
machines, prioritizing and scheduling tasks based on network
demand, and/or providing backup contingency in the event of
component failure or reduction in operability. In some
embodiments a server farm and/or PaaS may be implemented
in a manner that is transparent to the party implementing the
system (the implementing party). For example, a PaaS system
may be implemented by a service provider, such as WIN-
DOWS AZURE, GOOGLE cloud platform, etc. The service
provider may manage physical servers and other computer
equipment. The implementing party may not manage or even
be aware of the physical nature of the computers or storage
devices that are used. Instead, the PaaS system may be pre-
sented to the implementing party as logical units of comput-
ing power and storage leased from the service provider.

Various embodiments of the systems and methods
described herein may employ one or more electronic com-
puter networks to promote communication among different
components, transfer data, or to share resources and informa-
tion. For example, the various systems 102, 106, 108, 110,
112,114,116, 118 may be in communication via one or more
electronic computer networks. Such computer networks can
be classified according to the hardware and software technol-
ogy that is used to interconnect the devices in the network,
such as optical fiber, Ethernet, wireless LAN, HomePNA,
power line communication or G.hn. The computer networks
may also be embodied as one or more of the following types
of networks: local area network (LLAN); metropolitan area
network (MAN); wide area network (WAN); virtual private
network (VPN); storage area network (SAN); or global area
network (GAN), among other network varieties.

For example, a WAN computer network may cover a broad
area by linking communications across metropolitan,
regional, or national boundaries. The network may use rout-
ers and/or public communication links. One type of data
communication network may cover a relatively broad geo-
graphic area (e.g., city-to-city or country-to-country) which
uses transmission facilities provided by common carriers,
such as telephone service providers. In another example, a
GAN computer network may support mobile communica-
tions across multiple wireless LANs or satellite networks. In
another example, a VPN computer network may include links
between nodes carried by open connections or virtual circuits
in another network (e.g., the Internet) instead of by physical
wires. The link-layer protocols of the VPN can be tunneled
through the other network. One VPN application can promote
secure communications through the Internet. The VPN can
also be used to separately and securely conduct the traffic of
different user communities over an underlying network. The
VPN may provide users with the virtual experience of access-
ing the network through an IP address location other than the
actual IP address which connects the access device to the
network.

Computer networks may include hardware elements to
interconnect network nodes, such as network interface cards
(NICs) or Ethernet cards, repeaters, bridges, hubs, switches,
routers, and other like components. Such elements may be
physically wired for communication and/or data connections
may be provided with microwave links (e.g., IEEE 802.12) or
fiber optics, for example. A network card, network adapter or
NIC can be designed to allow computers to communicate
over the computer network by providing physical access to a
network and an addressing system through the use of MAC
addresses, for example. A repeater can be embodied as an
electronic device that receives and retransmits a communi-
cated signal at a boosted power level to allow the signal to
cover a telecommunication distance with reduced degrada-

10

15

20

25

30

35

40

45

50

55

60

65

14

tion. A network bridge can be configured to connect multiple
network segments at the data link layer of a computer network
while learning which addresses can be reached through which
specific ports of the network. In the network, the bridge may
associate a port with an address and then send traffic for that
address only to that port. In various embodiments, local
bridges may be employed to directly connect local area net-
works (LLANs); remote bridges can be used to create a wide
area network (WAN) link between LANs; and/or, wireless
bridges can be used to connect LANs and/or to connect
remote stations to LANSs.

In various embodiments, a hub may be employed which
contains multiple ports. For example, when a data packet
arrives at one port of a hub, the packet can be copied unmodi-
fied to all ports of the hub for transmission. A network switch
or other devices that forward and filter OSI layer 2 datagrams
between ports based on MAC addresses in data packets can
also be used. A switch can possess multiple ports, such that
most of the network is connected directly to the switch, or
another switch that is in turn connected to a switch. The term
“switch” can also include routers and bridges, as well as other
devices that distribute data traffic by application content (e.g.,
a Web URL identifier). Switches may operate at one or more
OSI model layers, including physical, data link, network, or
transport (i.e., end-to-end). A device that operates simulta-
neously at more than one of these layers can be considered a
multilayer switch. In certain embodiments, routers or other
like networking devices may be used to forward data packets
between networks using headers and forwarding tables to
determine an optimum path through which to transmit the
packets.

As employed herein, an application server may be a server
that hosts an API to expose business logic and business pro-
cesses for use by other applications. Examples of application
servers include J2EE or Java EE 5 application servers includ-
ing WebSphere Application Server. Other examples include
WebSphere Application Server Community Edition (IBM),
Sybase Enterprise Application Server (Sybase Inc),
WebLogic Server (BEA), JBoss (Red Hat), JRun (Adobe
Systems), Apache Geronimo (Apache Software Foundation),
Oracle OC4J (Oracle Corporation), Sun Java System Appli-
cation Server (Sun Microsystems), and SAP Netweaver AS
(ABAP/Java). Also, application servers may be provided in
accordance with the .NET framework, including the Win-
dows Communication Foundation, .NET Remoting, ADO-
.NET, and ASPNET among several other components. For
example, a Java Server Page (JSP) is a servlet that executes in
a web container which is functionally equivalent to CGI
scripts. JSPs can be used to create HTML pages by embed-
ding references to the server logic within the page. The appli-
cation servers may mainly serve web-based applications,
while other servers can perform as session initiation protocol
servers, for instance, or work with telephony networks. Speci-
fications for enterprise application integration and service-
oriented architecture can be designed to connect many difter-
ent computer network elements. Such specifications include
Business Application Programming Interface, Web Services
Interoperability, and Java EE Connector Architecture.

While various embodiments of the invention have been
described herein, it should be apparent, however, that various
modifications, alterations and adaptations to those embodi-
ments may occur to persons skilled in the art with the attain-
ment of some or all ofthe advantages of the present invention.
The disclosed embodiments are therefore intended to include
all such modifications, alterations and adaptations without
departing from the scope and spirit of the present invention as
set forth in the appended claims.

US 9,268,737 B2

15

We claim:

1. A computer-implemented system for managing virtual
computing services, the system comprising at least one pro-
cessor and operatively associated memory, wherein the at
least one processor is programmed to execute:

aservice interface to receive from an administrative user an

instruction indicating a configuration change for a first
virtual computing service; and

a plurality of agents:

wherein a leader agent selected from the plurality of

agents is to assign to at least one other agent selected

from the plurality of agents a plurality of jobs for

implementing the configuration change, wherein the

assigning comprises:

determining that a first job selected from the plurality
ofjobs that is associated with a first skill capability;

receiving from a second agent selected from the plu-
rality of agents an indication that the second agent
has the first skill capability, wherein the first skill
capability comprises at least one capability
selected from the group consisting of: an applica-
tion program interface for accessing a virtual desk-
top of a first type, or access to at least one resource
that is not accessible to agents not having the first
skill capability; and

assigning the first job to the second agent, wherein the
second agent is to execute the first job, and wherein
executing the first job comprises modifying a con-
figuration of a virtual desktop site associated with
the first virtual computing service.

2. The system of claim 1, wherein the service interface is
also to push the plurality of jobs to a queue associated with the
at least one other agent.

3. The system of claim 1, wherein the service interface is
also to push the configuration change to an entry at a configu-
ration database corresponding to the first virtual computing
service.

4. The system of claim 3, wherein the leader agent is
configured to assign a synch job for execution to a third agent
selected from the plurality of agents, wherein executing the
synch job comprises:

receiving from the configuration database an indication of

a database configuration for a virtual desktop site that
hosts the first virtual computing service;
receiving from the virtual desktop site an indication of an
actual configuration of the virtual desktop site; and

comparing the database configuration and the actual con-
figuration to derive a configuration difference set indi-
cating at least one difference between the database con-
figuration and the actual configuration.

5. The system of claim 4, wherein executing the synch job
further comprises:

writing the configuration difference set to the configuration

database;

comparing the configuration difference set to a prior con-

figuration difference set written to the configuration
database by a previously executed instance of the synch
job; and

identifying at least one configuration difference common

to the configuration difference set and the prior configu-
ration difference set, wherein the plurality of jobs com-
prises at least one job for applying, to the virtual desktop
site, the at least one configuration difference common to
the configuration difference set and the prior configura-
tion difference set.

10

15

20

25

30

35

40

45

50

55

60

65

16

6. The system of claim 4, wherein the plurality of jobs
comprises at least one job for applying the configuration
difference set to the virtual desktop site.

7. The system of claim 1, wherein the plurality of agents are
configured to select the leader agent from the plurality of
agents.

8. The system of claim 1, wherein the second agent is also
to receive, from the leader agent, at least one job trigger for at
least a second job associated with the skill capability.

9. The system of claim 1, wherein the plurality of jobs are
indicated to be executed according to a job order, wherein the
at least one processor is further programmed to execute an
agent coordinator, and wherein the agent coordinator is con-
figured to implement a lock system to ensure that the plurality
of jobs are executed according to the job order.

10. The system of claim 1, wherein assigning the plurality
of jobs for implementing the configuration change to the at
least one other agent selected from the plurality of agents
comprises pushing a plurality of job triggers to a queue asso-
ciated with the at least one other agent, wherein each of the
plurality of job triggers indicates:

a description of a corresponding job selected from the

plurality of jobs;

a chronological table indicating an order in which the plu-

rality of jobs is to be executed;

an action to be taken if a scheduled time for executing the

corresponding job is missed; and

a priority of the corresponding job.

11. The system of claim 1, wherein the service interface is
also to receive from the administrative user a second instruc-
tion indicating a second configuration change for a second
virtual computing service, and implement the second con-
figuration change by modifying a configuration of a virtual
desktop site associated with the second virtual computing
service.

12. A computer-implemented method for managing virtual
computing services, the method comprising:

executing, by a computer system, a service interface to

receive from an administrative user an instruction indi-
cating a configuration change for a first virtual comput-
ing service, wherein the computer system comprises at
least one processor and operatively associated memory;
and

executing a plurality of agents:

wherein a leader agent selected from the plurality of

agents is to assign to at least one other agent selected

from the plurality of agents a plurality of jobs for

implementing the configuration change, wherein the

assigning comprises:

determining that a first job selected from the plurality
ofjobs that is associated with a first skill capability;

receiving from a second agent selected from the plu-
rality of agents an indication that the second agent
has the first skill capability, wherein the first skill
capability comprises at least one capability
selected from the group consisting of: an applica-
tion program interface for accessing a virtual desk-
top of a first type, or access to at least one resource
that is not accessible to agents not having the skill
capability; and

assigning the first job to the second agent, wherein the
second agent is to execute the first job, and wherein
executing the first job comprises modifying a con-
figuration of a virtual desktop site associated with
the first virtual computing service.

US 9,268,737 B2

17

13. The method of claim 12, wherein the service interface
is also to push the plurality of jobs to a queue associated with
the at least one other agent.

14. The method of claim 12, wherein the service interface
is also to push the configuration change to an entry at a
configuration database corresponding to the first virtual com-
puting service.

15. The method of claim 14, wherein the leader agent is
configured to assign a synch job for execution to a third agent
selected from the plurality of agents, wherein executing the
synch job comprises:

receiving from the configuration database an indication of

a database configuration for a virtual desktop site that
hosts the first virtual computing service;
receiving from the virtual desktop site an indication of an
actual configuration of the virtual desktop site; and

comparing the database configuration and the actual con-
figuration to derive a configuration difference set indi-
cating at least one difference between the database con-
figuration and the actual configuration.

16. The method of claim 15, wherein executing the synch
job further comprises:

writing the configuration difference set to the configuration

database;

comparing the configuration difference set to a prior con-

figuration difference set written to the configuration
database by a previously executed instance of the synch
job; and

identifying at least one configuration difference common

to the configuration difference set and the prior configu-

10

15

18

ration difference set, wherein the plurality of jobs com-
prises at least one job for applying, to the virtual desktop
site, the at least one configuration difference common to
the configuration difference set and the prior configura-
tion difference set.

17. The method of claim 15, wherein the plurality of jobs
comprises at least one job for applying the configuration
difference set to the virtual desktop site.

18. The method of claim 12, wherein the plurality of agents
are configured to select the leader agent from the plurality of
agents.

19. The method of claim 12, wherein the second agent is
also to receive, from the leader agent, at least one job trigger
for at least a second job associated with the skill capability.

20. The method of claim 12, wherein assigning the plural-
ity of jobs for implementing the configuration change to the at
least one other agent selected from the plurality of agents
comprises pushing a plurality of job triggers to a queue asso-
ciated with the at least one other agent, wherein each of the
plurality of job triggers indicates:

a description of a corresponding job selected from the

plurality of jobs;

a chronological table indicating an order in which the plu-

rality of jobs is to be executed;

an action to be taken if a scheduled time for executing the

corresponding job is missed; and

a priority of the corresponding job.

#* #* #* #* #*

